Probabilistic Entropy EMD Thresholding for Periodic Fault Signal Enhancement in Rotating Machine

Author:

Dang Jian12,Jia Rong12ORCID,Wu Hua2,Luo Xingqi12,Chen Diyi3ORCID

Affiliation:

1. State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

2. Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China

3. Institute of Water Resources and Hydropower Research, Northwest A&F University, Yangling 712100, China

Abstract

Since the slight fault feature of incipient fault is usually polluted by heavy background noise, it is difficult to extract the weak feature signal in rotating machine. As an adaptive decomposing technique, empirical mode decomposition (EMD) based denoising methods have a good effect on the feature separation and noise elimination. However, for rotating machine with poor working environment, the components attributed to noise might have higher amplitudes, which restrict the efficiency of noise reduction in current EMD-based denoising methods. Therefore, a probabilistic entropy EMD thresholding algorithm for periodic fault signal enhancement in rotating machine is proposed in this paper. In this method, the entropy threshold of each IMF is constructed instead of the threshold applied to N sampling points of each IMF directly, which overcomes the shortcoming of the denoising effect limited by larger amplitude noise reservation and smaller amplitude feature signal reduction in the current denoising methods. Meanwhile, in order to make the amplitudes of all the IMF reduce in a smooth way, a multiscale thresholding algorithm based on quantile statistics to provide probability indexes is presented. Engineering application demonstrates that the proposed method is effective in the noise reduction and fault feature enhancement in the rotating machine.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3