Intelligent Segmentation Medical Assistance System for MRI Images of Osteosarcoma in Developing Countries

Author:

Wu Jia1ORCID,Yang Shun2,Gou Fangfang1,Zhou Zhixun1,Xie Peng2,Xu Nuo2,Dai Zhehao2ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Chang sha 410083, China

2. Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China

Abstract

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. It has a high degree of malignancy and a poor prognosis in developing countries. The doctor manually explained that magnetic resonance imaging (MRI) suffers from subjectivity and fatigue limitations. In addition, the structure, shape, and position of osteosarcoma are complicated, and there is a lot of noise in MRI images. Directly inputting the original data set into the automatic segmentation system will bring noise and cause the model’s segmentation accuracy to decrease. Therefore, this paper proposes an osteosarcoma MRI image segmentation system based on a deep convolution neural network, which solves the overfitting problem caused by noisy data and improves the generalization performance of the model. Firstly, we use Mean Teacher to optimize the data set. The noise data is put into the second round of training of the model to improve the robustness of the model. Then, we segment the image using a deep separable U-shaped network (SepUNet) and conditional random field (CRF). SepUnet can segment lesion regions of different sizes at multiple scales; CRF further optimizes the boundary. Finally, this article calculates the area of the tumor area, which provides a more intuitive reference for assisting doctors in diagnosis. More than 80000 MRI images of osteosarcoma from three hospitals in China were tested. The results show that the proposed method guarantees the balance of speed, accuracy, and cost under the premise of improving accuracy.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3