A Social Force Evacuation Model with Guides Based on Fuzzy Clustering and a Two-Layer Fuzzy Inference

Author:

Xiao Qian1ORCID,Li Jiayang12ORCID

Affiliation:

1. School of Intelligent Science and Engineering Shenyang University, Shenyang, Liaoning 110044, China

2. School of Business Administration Northeastern University, Shenyang, Liaoning 110000, China

Abstract

Current emergency management research mainly specifies the positions of evacuation guides from a knowledge base of experience, disregarding the subjective perceived decision-making of pedestrians caught in an emergency situation. Therefore, in this paper, a fuzzy inference system for pedestrians to select guides is designed from the perspective of pedestrians, and a crowd evacuation model with guides under limited vision is constructed. First, selecting the indoor evacuation of people with limited vision as the context, the number and optimal initial positions of guides are determined by a Gaussian fuzzy clustering algorithm. Next, a two-layer fuzzy inference system based on a multifactor pedestrian selection guide is established. Then, from the comprehensive perspective of managers and pedestrians, an improved social force evacuation model with guides is constructed. A comparison of the evacuation times and evacuation processes of known methods with different scene population distributions is analyzed through simulations. The results show that the guide setting scheme of the improved model is more conducive to reducing evacuation times and balancing exit utilizations. The model can provide a basis for emergency management decision-making departments to formulate more flexible guidance strategies.

Funder

National Natural Science Foundation of China-Liaoning Joint Fund

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3