Endophytic Fungi and Secondary Metabolites of Rehmannia Glutinosa Based on Traditional Chinese Medicine Fingerprints

Author:

Geng Xiaotong1ORCID

Affiliation:

1. School of Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xingyang 464000, Henan, China

Abstract

Research on the active components of medicinal plants has always been the focus of research, and research on the active components of medicinal plant endophytic fungi and their secondary metabolites has also attracted widespread attention. Endophytic fungi of medicinal plants are widely distributed and are ubiquitous in various biological groups in nature. Rehmannia glutinosa contains a variety of active ingredients, which are regarded as the top grade of Chinese medicinal materials. It is of certain significance to study endophytic fungi and their metabolites of Rehmannia glutinosa. In this paper, endophytic fungi and their secondary metabolites of Rehmannia glutinosa were studied using fingerprint technology, which initially understands the diversity of endophytic fungi in Rehmannia glutinosa. In this paper, the roots and leaves of Rehmannia glutinosa were used as experimental materials. The fungi were cultured in the medium, the fungi were isolated and purified by the tissue block method, the fungal growth of Rehmannia glutinosa in different parts was determined, and the types of endophytic fungi were identified by microscopic identification and fingerprinting. The isolated strains were tested for biological activity using oryza oryzae spores, and highly active strains were screened. Fermentation products of endophytic fungi were separated and purified by chromatography, and the structure of the compounds was identified by nuclear magnetic resonance spectroscopy. Through the above studies, the population structure of endophytic fungi of Rehmannia glutinosa was determined, 3 highly active strains were found, and the structures of 7 endophytic fungi metabolites were identified, of which 3 were newly discovered compounds.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Reference20 articles.

1. Bioprocesses optimization and anticancer activity of camptothecin from Aspergillus flavus, an endophyte of in vitro cultured Astragalus fruticosus[J];A. S. A. El-Sayed;Molecular Biology Reports,2022

2. New isoquinoline alkaloids from paraphaeosphaeria sporulosa F03, a fungal endophyte isolated from paepalanthus planifolius[J];M. D. Amorim;Planta Medica,2022

3. Identification of bioactive metabolites and evaluation of in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of endophyte fungi isolated from Elaeocarpus floribundus blume - ScienceDirect[J];B. Kma;Journal of Ethnopharmacology,2021

4. Neuroprotective Activities of Constituents from Phyllosticta capitalensis , an Endophyte Fungus of Loropetalum chinense var. rubrum

5. Anticancer natural products from Aspergillus neoniger, an endophyte of Ficus carica[J];R. Abdou;Bulletin of the National Research Centre,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3