Network Intrusion Detection Based on Sparse Autoencoder and IGA-BP Network

Author:

Deng Hongli1ORCID,Yang Tao1ORCID

Affiliation:

1. Education and Information Technology Center, China West Normal University, Nanchong City, Sichuan Province, China

Abstract

Network intrusion detection system provides a better network security solution than other traditional network defense technologies. Aiming at the increasingly serious problem of Internet security in the big data environment, a network intrusion detection model based on autoencoder network model and improved genetic algorithm BP (IGA-BP) network is constructed. In order to reduce the data dimension and eliminate redundant information, the autoencoder network model is firstly used to denoise and dedimension. A new population was formed by selecting some of the best parent individuals for cross mutation and replacing the worst parent individuals. The improved genetic algorithm and new population generation model will provide more reasonable initial parameters for BP network, namely, IGA-BP network model. Based on IGA-BP network model, the problems of slow detection rate and easy to get into local optimality in BP network are solved. The experiments were performed on KDD CUP99 dataset, which simulated different types of user organizations and different types of network intrusion. Compared with the existing intrusion detection methods, the experimental results show that the proposed method has a great effect on classification accuracy, false positives, and detection rate.

Funder

Sichuan Science and Technology Program

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference34 articles.

1. Firefly algorithm based feature selection for network intrusion detection;B. Selvakumar;Computers & Security,2019

2. Log-Based Intrusion Detection for Cloud Web Applications Using Machine Learning;J. Fontaine,2019

3. Anomaly-Based – Intrusion Detection System using User Profile Generated from System Logs

4. Lightweight intrusion detection system based on feature selection;Y. Chen;Ruan Jian Xue Bao (Journal of Software),2007

5. An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3