PP- and Split PS-Wave AVA Responses of Fractured Shale

Author:

Yang Shuai1ORCID,Lu Jun1ORCID

Affiliation:

1. Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China

Abstract

With seismic exploration advancing to the deep Earth, the seismic response of fractured strata has currently become a hot research topic. However, characteristics of the amplitude variation with angle (AVA) of saturated fractured shale still remain unclear. Furthermore, the direct relationships between the AVA response and fracture system parameters have not received much attention. This study is aimed at analyzing the effect of fracture density on AVA responses of fractured shale. For this purpose, we propose a method for modeling saturated fractured shale and analyzing AVA responses of PP- and split PS-waves. First, we introduce Gurevich’s fluid theory into the fractured-shale modeling and establish the relationship between Thomsen’s weak anisotropy parameters and fracture density and fluid properties. Second, we perform forward simulation considering an isotropic overburden and a fractured stratum. The results show that differences in AVA responses of the fractured-shale model and the isotropic model increase with increasing fracture densities. At small to intermediate incidence angles, the reflection coefficients of split PS-waves increase, whereas those of PP-wave decrease. The reflection coefficients of the two models differ dramatically at incidence angles larger than 55°. Furthermore, when the fracture density is large, polarity reversal occurs only in PS2-wave AVA gathers.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3