Affiliation:
1. School of Computer, Xi’an University of Post & Telecommunications, Shaanxi, China
Abstract
Due to missing values, incomplete dataset is ubiquitous in multimodal scene. Complete data is a prerequisite of the most existing multimodality data fusion methods. For incomplete multimodal high-dimensional data, we propose a feature selection and classification method. Our method mainly focuses on extracting the most relevant features from the high-dimensional features and then improving the classification accuracy. The experimental results show that our method produces considerably better performance on incomplete multimodal data such as ADNI dataset and Office dataset, compared to the case of complete data.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献