Affiliation:
1. Faculty of Science, Maejo University, Chiangmai 50290, Thailand
Abstract
Let C and Q be closed convex subsets of real Hilbert spaces H1 and H2, respectively, and let g:C→R be a strictly real-valued convex function such that the gradient ∇g is an 1/L-ism with a constant L>0. In this paper, we introduce an iterative scheme using the gradient projection method, based on Mann’s type approximation scheme for solving the constrained convex minimization problem (CCMP), that is, to find a minimizer q∈C of the function g over set C. As an application, it has been shown that the problem (CCMP) reduces to the split feasibility problem (SFP) which is to find q∈C such that Aq∈Q where A:H1→H2 is a linear bounded operator. We suggest and analyze this iterative scheme under some appropriate conditions imposed on the parameters such that another strong convergence theorems for the CCMP and the SFP are obtained. The results presented in this paper improve and extend the main results of Tian and Zhang (2017) and many others. The data availability for the proposed SFP is shown and the example of this problem is also shown through numerical results.
Funder
Science Achievement Scholarship of Thailand
Subject
Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献