FPGA Implementation of a Single Step MFCV Estimator Based on EMG in Diabetic Neuropathy

Author:

De Venuto Daniela1ORCID,Mezzina Giovanni1

Affiliation:

1. Department of Electrical and Information Engineering, Politecnico di Bari, Bari 70125, Italy

Abstract

This paper details the design and the hardware implementation of a real-time diagnostic system based on FPGA for the muscle fibre conduction velocity estimation (MFCV). The MFCV is considered as a principal monitoring index for diabetic neuropathy (DPN), as well as in muscle fatigue assessment, to evaluate the muscle fibre status. The FPGA platform evaluates the MFCV during dynamic contractions (e.g., gait), by exploiting a multichannel sensing system composed of 4 wireless surface EMG electrodes, placed in pair on each leg. Raw data are digitized and made binary to create two bitstreams for each monitored limb. Then, a comparison between the two-bit streamed EMGs extracted from the same leg is carried out. The comparison, which allows extracting the MFCV, exploits a computationally light version of the cross-correlation method. The overall architecture implemented and validated on an Altera Cyclone V FPGA is HPS-free and exploits 22.5% ALMs, 10,874 ALUTs, 9.81% registers, 3.36% block memory, and <2.7% of the total wires available on the platform. The choice of FPGA as computing system lies in the possibility to determine resource utilization, related timing constraints for a future real-time ASIC implementation in wearable applications. From the actual muscle contraction during gait (cyclical starting point of the computing), the system spends about 316 ms to acquire useful data and 47.5 ms (on average) to process the signal and provide the output, dynamically dissipating 28.6 mW. The accuracy of the tool evaluation has been evaluated proving the repeatability of the measurements by in vivo test. In this context, 1250 contractions from each subject involved in a protocolled 10-meter walk have been acquired (n=10 subjects evaluated). On average, the same MFCV estimation has been extracted on 1184/1250 contractions (standard deviation of 11 contractions), reaching an accuracy of 94.7%. These estimations fully match the physiological value range reported in literature.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Architecture for MUAPs Propagation Speed Estimator triggered by Foot Plant Switch;2020 IEEE Nordic Circuits and Systems Conference (NorCAS);2020-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3