Fast Second-Order Orthogonal Tensor Subspace Analysis for Face Recognition

Author:

Zhou Yujian1,Bao Liang2,Lin Yiqin1

Affiliation:

1. Department of Mathematics and Computational Science, Institute of Computational Mathematics, Hunan University of Science and Engineering, Yongzhou 425100, China

2. Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

Abstract

Tensor subspace analysis (TSA) and discriminant TSA (DTSA) are two effective two-sided projection methods for dimensionality reduction and feature extraction of face image matrices. However, they have two serious drawbacks. Firstly, TSA and DTSA iteratively compute the left and right projection matrices. At each iteration, two generalized eigenvalue problems are required to solve, which makes them inapplicable for high dimensional image data. Secondly, the metric structure of the facial image space cannot be preserved since the left and right projection matrices are not usually orthonormal. In this paper, we propose the orthogonal TSA (OTSA) and orthogonal DTSA (ODTSA). In contrast to TSA and DTSA, two trace ratio optimization problems are required to be solved at each iteration. Thus, OTSA and ODTSA have much less computational cost than their nonorthogonal counterparts since the trace ratio optimization problem can be solved by the inexpensive Newton-Lanczos method. Experimental results show that the proposed methods achieve much higher recognition accuracy and have much lower training cost.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

Reference38 articles.

1. Eigenfaces for Recognition

2. Computer Science and Scientific Computing,1990

3. Pattern Recognition and Machine Learning

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved MPCA Algorithm with Weight Matrix Based on Many-Objective Optimization;Communications in Computer and Information Science;2023

2. Face Recognition via Taxonomy of Illumination Normalization;Intelligent Systems Reference Library;2016-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3