A Fluid-Structure Interaction Model for Bridge Safety Assessment under Scour Conditions

Author:

Lin Tzu-Kang1ORCID,Chen Po-Wei1,Chang Hao-Tun1

Affiliation:

1. Department of Civil Engineering, National Yang Ming Chiao Tung University, Taipei 30012, Taiwan

Abstract

Bridge pier scour engendered by typhoons or flooding poses a threat to the stability, bearing capacity, and other performance parameters of bridge foundations. In traditional static evaluation procedures, linear force distributions are used to express the fluid behavior under current forces, which results in overestimation of stability. A finite element simulation was conducted in this study to correctly evaluate the effect of fluid by developing a fluid-solid interaction (FSI) system. In the FSI system, simulation results for both the fluid and solid systems were exchanged. Thus, the force generated by the fluid system could be incorporated into the solid system to estimate the dynamic response of a pier. A scaled single-pier scour test was first conducted numerically and experimentally. The results showed that the established FSI system can consider the fluid-solid interaction and reflect pier scour behavior accurately. To test the validity of the proposed system, the scour process was numerically conducted on an engineering bridge. Two safety factors were proposed to evaluate the stability of the bridge structure under extreme events such as rainfall or typhoon. The result has proven that the scour stability of the bridge pier can be appropriately evaluated by the proposed system.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3