Mesoscopic Mechanism of Permeability of Coal Rock Mass with Increasing Temperature in the Range of Room Temperature to 350°C

Author:

Xie Jianlin1ORCID,Meng Tao1ORCID,Jin Tingxu1ORCID,Sun Xiaoyuan1ORCID

Affiliation:

1. College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China

Abstract

Engineering research on geothermal development, underground gasification of coal, and heat-injection-enhanced coal bed gas extraction is gaining more and more attention from the international community, and therefore the study of permeability of coal rock bodies under the effect of temperature has become almost a hot spot in the research of rock mechanics and seepage mechanics. However, the relationship between temperature and permeability that has been seen in the literature is different, and the mechanism explanation varies greatly. In this paper, the following conclusions were obtained from an experimental study of the fine-scale structural evolution of coking coal and fine sandstone specimens, using an experimental research method of simultaneous image observation of the pore structure evolution of coal rock samples by online heating. (1) With the increase of temperature, the inner areas of coal and rock mass with both solid particles and pure pores are affected by temperature. The microscopic experiment shows that the gray level of the image changes greatly, that is, the changes in pores are also large. These pores are the roar pores in the coal and rock mass. (2) With the increase in temperature, the solid skeleton of the coal specimen will produce expansion deformation. On the one hand, this expansion deformation will increase the pores between some skeletons and increase the overall porosity of the specimen. On the other hand, it will also reduce the pore area and reduce the overall porosity of the specimen due to the intrusion of the solid skeleton into the adjacent pores. These two phenomena occur at the same time with the increase in temperature. The dominant mode is determined by the type of coal. The physical structure and temperature of the section are affected jointly. (3) When the temperature increases, the porosity of coking coal samples increases first and then decreases, and 180°C is the turning point. The fine sandstone sample shows the law of decreasing first and then increasing, and 210°C is the turning point. (4) When the temperature increases, the smaller the porosity of coal and rock samples, the specimen shows the intrusion of the solid skeleton into adjacent pores, that is, the porosity decreases. After the turning temperature, the porosity increases with the increase of temperature.

Funder

Shanxi Provincial Key Research and Development Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3