Performance Analysis of a Wind Turbine Pitch Neurocontroller with Unsupervised Learning

Author:

Sierra-García J. Enrique1ORCID,Santos Matilde2

Affiliation:

1. Department of Electromechanical Engineering, University of Burgos, Burgos 09006, Spain

2. Technological Knowledge Institute, Complutense University of Madrid, Madrid 28040, Spain

Abstract

In this work, a neural controller for wind turbine pitch control is presented. The controller is based on a radial basis function (RBF) network with unsupervised learning algorithm. The RBF network uses the error between the output power and the rated power and its derivative as inputs, while the integral of the error feeds the learning algorithm. A performance analysis of this neurocontrol strategy is carried out, showing the influence of the RBF parameters, wind speed, learning parameters, and control period, on the system response. The neurocontroller has been compared with a proportional-integral-derivative (PID) regulator for the same small wind turbine, obtaining better results. Simulation results show how the learning algorithm allows the neural network to adjust the proper control law to stabilize the output power around the rated power and reduce the mean squared error (MSE) over time.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3