Affiliation:
1. Department of Electromechanical Engineering, University of Burgos, Burgos 09006, Spain
2. Technological Knowledge Institute, Complutense University of Madrid, Madrid 28040, Spain
Abstract
In this work, a neural controller for wind turbine pitch control is presented. The controller is based on a radial basis function (RBF) network with unsupervised learning algorithm. The RBF network uses the error between the output power and the rated power and its derivative as inputs, while the integral of the error feeds the learning algorithm. A performance analysis of this neurocontrol strategy is carried out, showing the influence of the RBF parameters, wind speed, learning parameters, and control period, on the system response. The neurocontroller has been compared with a proportional-integral-derivative (PID) regulator for the same small wind turbine, obtaining better results. Simulation results show how the learning algorithm allows the neural network to adjust the proper control law to stabilize the output power around the rated power and reduce the mean squared error (MSE) over time.
Funder
Ministerio de Ciencia, Innovación y Universidades
Subject
Multidisciplinary,General Computer Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献