Affiliation:
1. School of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
2. Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
Abstract
Purpose. Based on the experiment of the microarteriogenesis that is associated with angiogenesis during tissue repair process in porous silk fibroin films (PSFFs), we investigate the characteristics of micro-arteriogenesis and explore its mechanism.Methods. After the porous silk fibroin materials are implanted into the back hypodermal tissue of SD rats, the arteriole development and the morphogenesis of smooth muscle cell are histologically monitored and the micro-arteriogenesis is quantitatively analyzed.Results. 10 days after implantation, the arteriole density reaches the highest level in the junction of silk fibroin materials with tissues. Three weeks later, the arteriolar density in the materials reaches the maximum, and the arterioles in the junction of materials with tissues appear to be in a mature and upgrading state.Modeling of Microarteriogenesis. The arterioles in materials are generated after capillary angiogenesis. It is inferred that arteriolar development does not start until the network of the capillaries is formed. At first, the arterioles grow in the conjunct area of precapillaries with arterioles. Then with the extension of the arterioles, the upgrade of arterioles in connecting area is observed at a later stage. Based on the observation, the conditions and the mechanism of microarterializations as well as the upgrade of arterioles are analyzed.
Funder
National Key Basic Research and Developing Project of China
Subject
Biomedical Engineering,Biomaterials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献