4-Octyl Itaconate Prevents Free Fatty Acid-Induced Lipid Metabolism Disorder through Activating Nrf2-AMPK Signaling Pathway in Hepatocytes

Author:

Chu Xu12,Li Longlong12,Yan Weiyuan12,Ma Haitian12ORCID

Affiliation:

1. Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

2. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Nonalcoholic fatty liver disease (NAFLD), characterized with oxidative stress and hepatic steatosis, is a serious threat to human health. As a specific activator of nuclear factor E2-related factor 2 (Nrf2), the 4-octyl itaconate (4-OI) has the beneficial effects in antioxidant and anti-inflammation; however, whether 4-OI can alleviate hepatic steatosis and its mechanism is still unknown. The present study was aimed at investigating the protective effects of 4-OI on free fat acid- (FFA-) induced lipid metabolism disorder and its potential molecular mechanism in hepatocytes. The results showed that 4-OI treatment markedly alleviated FFA-induced oxidative stress and excessive lipid accumulation in hepatocytes. Mechanistically, 4-OI significantly suppressed the overproduction of reactive oxygen species (ROS) through activation of Nrf2; the downregulation of ROS level induced a downregulation of AMP-dependent protein kinase (AMPK) phosphorylation level which finally ameliorated excessive lipid accumulation in FFA-stimulated hepatocytes. In general, our data demonstrated that 4-OI relieves the oxidative stress and lipid metabolism disorder in FFA-stimulated hepatocytes; and these beneficial effects were achieved by activating the Nrf2-AMPK signaling pathway. These data not only expand the new biological function of 4-OI but also provide a theoretical basis for 4-OI to protect against lipid metabolism disorders and related diseases, such as NAFLD.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3