Amentoflavone Exerts Anti-Neuroinflammatory Effects by Inhibiting TLR4/MyD88/NF-κB and Activating Nrf2/HO-1 Pathway in Lipopolysaccharide-Induced BV2 Microglia

Author:

Rong Shikuo123ORCID,Yang Chunrong4ORCID,Wang Feng35ORCID,Wu Yiyang3ORCID,Sun Kuishen3ORCID,Sun Tao3ORCID,Wu Zeyu12ORCID

Affiliation:

1. Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China

2. Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China

3. Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, China

4. Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China

5. Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China

Abstract

Background. Amentoflavone, a natural biflavone, exerts anti-inflammation, antioxidation, and antiapoptosis effects on many diseases. However, the mechanism of amentoflavone on neuroinflammation-related diseases has not been comprehensively examined clearly. Methods. BV2 microglial cells were treated with amentoflavone (10 μM), followed by lipopolysaccharide (LPS). Microglial activation and migration ability and the expression of proinflammatory cytokines and other signaling proteins were determined using immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay, and wound-healing assays. Results. Amentoflavone restored LPS-induced microglia activation, migration, and inflammation response which depends on regulating toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) pathway. In addition, amentoflavone also enhanced nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) levels in LPS-treated BV2 microglial cells. Conclusions. Amentoflavone ameliorated LPS-induced neuroinflammatory response and oxidative stress in BV2 microglia. These data provide new insight into the mechanism of amentoflavone in the treatment of neuroinflammation-related diseases. Therefore, amentoflavone may be a potential therapeutic option for neurological disorders.

Funder

Guangdong Provincial People's Hospital

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3