Optimal Maintenance Decision Method for a Sensor Network Based on Belief Rule Base considering Attribute Correlation

Author:

Li Shaohua12ORCID,Liu Bingxin3ORCID,Feng Jingying4ORCID,Qi Ruihua2ORCID,He Wei3ORCID,Xu Ming2ORCID,Yuan Linxin2ORCID,Wang Shiwen2ORCID

Affiliation:

1. School of Innovation and Entrepreneurship, Dalian University of Foreign Languages, Dalian 116044, China

2. School of Software, Dalian University of Foreign Languages, Dalian 116044, China

3. School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China

4. Police Information Department, Liaoning Police Academy, Dalian 116036, China

Abstract

Optimal maintenance decision for a sensor network aims to intelligently determine the optimal repair time. The accuracy of the optimal maintenance decision method directly affects the reliability and safety of the sensor network. This paper develops a new optimal maintenance decision method based on belief rule base considering attribute correlation (BRB-c), which is designed to address three challenges: the lack of observation data, complex system mechanisms, and characteristic correlation. This method consists of two sections: the health state assessment model and the health state prediction model. Firstly, the former is accomplished through a BRB-c-based health assessment model that considers characteristic correlation. Subsequently, based on the current health state, a Wiener process is used to predict the health state of the sensor network. After predicting the health state, experts are then required to establish the minimum threshold, which in turn determines the optimal maintenance time. To demonstrate the proposed method is effective, a case study for the wireless sensor network (WSN) of oil storage tank was conducted. The experimental data were collected from an actual storage tank sensor network in Hainan Province, China. The experimental results validate the accuracy of the developed optimal maintenance decision model, confirming its capability to efficiently predict the optimal maintenance time.

Funder

Social Science Planning Foundation of Liaoning Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3