Flow Enhancement of Mineral Pastes to Increase Water Recovery in Tailings: A Matlab-Based Imaging Processing Tool

Author:

Mondaca S. L.1,Leiva C. A.1ORCID,Acuña C. A.2,Serey E. A.1

Affiliation:

1. Department of Chemical Engineering, Universidad Católica del Norte, 1270709 Antofagasta, Chile

2. Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

Abstract

The rate of growth of mining copper industry in Chile requires higher consumption of water, which is a resource limited in quality and quantity and a major point of concern in present times. In addition, the efficient use of water is restricted due to high levels of evaporation (10 to 15 (l/m2) per day), in particular at the north highland mining sites (Chile). On the contrary, the final disposal of tailings is mainly on pond, which loses water by evaporation and in some cases by percolation. An alternative are the paste thickeners, which generate stable paste (70% solids), reducing evaporation and percolation and therefore reducing water make up. Water is a resource with more demand as the industries are expanding, making the water recovery processes more of a necessity than a simple upgrade in efficiency. This technology was developed in Canada (early 80s) and it has widely been used in Australia (arid zones with similar weather conditions to Chile), although few plants are using this technology. The tendency in the near future is to move from open ponds to paste thickeners. One of the examples of this is Minera El Tesoro. This scenario requires developing technical capacity in both paste flow characterization and rheology modifiers (fluidity enhancer) in order to make possible the final disposal of this paste. In this context, a new technique is introduced and experimental results of fluidity modifiers are discussed. This study describes how water content affects the flow behavior and depositional geometry of tailings and silica flour pastes. The depositional angle determined from the flume tests, and the yield stresses is determined from slump test and a rheological model. Both techniques incorporate digital video and image analysis. The results indicate that the new technique can be incorporated in order to determine the proper solid content and modifiers to a given fluidity requirement. In addition, the experimental results showed that the pH controls strongly the fluid paste behavior.

Funder

Universidad Católica del Norte

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3