Affiliation:
1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
Abstract
For passengers, the most common feeling during running on the bumpy road is continuous vertical discomfort, and when the vehicle is braking, especially the emergency braking, the instantaneous inertia of the vehicle can also cause a strong discomfort of the passengers, so studying the comfort of the vehicle during the braking process is of great significance for improving the performance of the vehicle. This paper presented a complete control scheme for vehicles equipped with the brake-by-wire (BBW) system aiming at ensuring braking comfort. A novel braking intention classification method was proposed based on vehicle braking comfort, which divided braking intention into mild brake, medium comfort brake, and emergency brake. Correspondingly, in order to improve the control accuracy of the vehicle brake system and to best meet the driver’s brake needs, a braking intention recognizer relying on fuzzy logic was established, which used the road condition and the brake pedal voltage and its change rate as input, output real-time driver's braking intention, and braking intensity. An optimal brake force distribution strategy for the vehicle equipped with the BBW system based on slip rate was proposed to determine the relationship between braking intensity and target slip ratio. Combined with the vehicle dynamics model, improved sliding mode controller, and brake force observer, the joint simulation was conducted in Simulink and CarSim. The cosimulation results show that the proposed braking intention classification method, braking intention recognizer, brake force distribution strategy, and sliding mode control can well ensure the braking comfort of the vehicle equipped with the BBW system under the premise of ensuring brake safety.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献