Sliding Mode Control of Vehicle Equipped with Brake-by-Wire System considering Braking Comfort

Author:

Chen Shuai1ORCID,Zhang Xilong1ORCID,Wang Jizhong1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

Abstract

For passengers, the most common feeling during running on the bumpy road is continuous vertical discomfort, and when the vehicle is braking, especially the emergency braking, the instantaneous inertia of the vehicle can also cause a strong discomfort of the passengers, so studying the comfort of the vehicle during the braking process is of great significance for improving the performance of the vehicle. This paper presented a complete control scheme for vehicles equipped with the brake-by-wire (BBW) system aiming at ensuring braking comfort. A novel braking intention classification method was proposed based on vehicle braking comfort, which divided braking intention into mild brake, medium comfort brake, and emergency brake. Correspondingly, in order to improve the control accuracy of the vehicle brake system and to best meet the driver’s brake needs, a braking intention recognizer relying on fuzzy logic was established, which used the road condition and the brake pedal voltage and its change rate as input, output real-time driver's braking intention, and braking intensity. An optimal brake force distribution strategy for the vehicle equipped with the BBW system based on slip rate was proposed to determine the relationship between braking intensity and target slip ratio. Combined with the vehicle dynamics model, improved sliding mode controller, and brake force observer, the joint simulation was conducted in Simulink and CarSim. The cosimulation results show that the proposed braking intention classification method, braking intention recognizer, brake force distribution strategy, and sliding mode control can well ensure the braking comfort of the vehicle equipped with the BBW system under the premise of ensuring brake safety.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3