An Investigation on Cocombustion Behaviors of Hydrothermally Treated Municipal Solid Waste with Coal Using a Drop-Tube Reactor

Author:

Lu Liang1,Jin Yuqi2,Nakamura Masato R.3,Castaldi Marco J.3,Yoshikawa Kunio1ORCID

Affiliation:

1. Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan

2. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China

3. Earth Engineering Center and Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA

Abstract

This work aims at demonstrating the feasibility of replacing Indonesian coal (INC) with hydrothermally treated municipal solid waste (MSWH) in cocombustion with high ash Indian coal (IC). The combustion efficiencies and emissions (CO, NO) of MSWH, INC and their blends with IC for a series of tests performed under a range of temperatures and air conditions were tested in a drop-tube reactor (DTR). The results showed the following. The combustion efficiency of IC was increased by blending both MSWH and INC and CO emission was reduced with increasing temperature. For NO emission, the blending of MSWH led to the increase of NO concentration whereas the effects of INC depended on the temperature. The combustion behaviors of IC-MSWH blend were comparable to those of the IC-INC blend indicating it is possible for MSWH to become a good substitute for INC supporting IC combustion. Moreover, the CO emission fell while the NO emission rose with increasing excess air for IC-MSWH blend at 900°C and the highest combustion efficiency was obtained at the excess air of 1.9. The existence of moisture in the cocombustion system of IC-MSWH blend could slightly improve the combustion efficiency, reduce CO, and increase NO.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3