Affiliation:
1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
Abstract
Recently, salient object detection based on the graph model has attracted extensive research interest in computer vision because the graph model can represent the relationship between two regions better. However, it is difficult to capture the high-level relationship between multiple regions. In this algorithm, the input image is segmented into superpixels first. Then, a weighted hypergraph model is established using fuzzy C-means clustering algorithm and a new weighting strategy. Finally, the random walk algorithm is used to sort all superpixels on the weighted hypergraph model to obtain the salient object. The experimental results on three benchmark datasets demonstrate that the proposed method performs better than some other state-of-the-art methods.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献