The Role of Marine Organic Extract in Bone Regeneration: A Pilot Study

Author:

Zielak João César1ORCID,Vendramini Ivana1,Corso Paola Fernanda Cotait de Lucas1ORCID,Muller Leonardo Luiz1ORCID,Crivellaro Viviane Rozeira1,Khajotia Sharukh Soli2,Esteban Florez Fernando Luis2ORCID,Scariot Rafaela1ORCID,Elsalanty Mohammed3,Deliberador Tatiana Miranda1ORCID,Storrer Carmen Lucia Mueller1ORCID

Affiliation:

1. School of Health Sciences, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300 Curitiba, Paraná 81280-330, Brazil

2. The University of Oklahoma Health Sciences Center, Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, 1201 N. Stonewall Avenue, Oklahoma City, Oklahoma 73117, USA

3. Augusta University, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta, Georgia 30912, USA

Abstract

Novel biomaterials capable of accelerating the healing process of skeletal tissues are urgently needed in dentistry. The present in vivo study assessed the osteoconductive and osteoinductive properties of experimental biphasic bioceramics (HA-TCP) modified or not by a nacre extract (marine organic extract, MOE) in a sheep model. Fabrication of MOE involved mixing ground nacre (0.05 g, particle sizes < 0.1 mm) with glacial ethanoic acid (5 mL, pH 7) for 72 hours using external magnetic stirring (25°C). Nonreactive carriers (sterile polythene tubes; 3/animal, radius: 2.5 mm, length: 10.0 mm) pertaining to the control (empty) or experimental groups (HA-TCP or MOE-modified HA-TCP) were implanted intramuscularly into the abdominal segment of the torso in sheep (n = 8, age: 2 years, weight: 45 kg). Euthanization of animals was performed at 3 and 6 months after surgery. Tissues harvested were subjected to macroscopic and radiographic assessments. Specimens were then stained for histological analysis. Both control and experimental animals were capable of inducing the neoformation of fibrous connective tissue at both time points where superior amounts of tissue formation and mineralization were detected for experimental groups (unaltered (at 3 and 6 mos) and MOE-modified HA-TCP (at 3 mos)). Histological results, however, revealed that mature bone formation was only observed for specimens fabricated with MOE-modified HA-TCP in a time-dependent manner. The present study has successfully demonstrated the in vivo utility of experimental biphasic bioceramics modified by MOE in an ectopic grafting sheep model. Promising osteoconductive and osteoinductive properties must be further developed and confirmed by subsequent research.

Funder

Brazilian Innovation Agency

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3