A Simulation Analysis and Screening of Deleterious Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Sheep LEP Gene

Author:

Girmay Shishay1ORCID,Ahmad Hafiz Ishfaq2ORCID,Zahra Quratul Ain3

Affiliation:

1. Department of Animal Science, College of Dryland Agriculture, Samara University, Ethiopia

2. Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan

3. Woman Medical Officer DHQ Hospital Rajanpur, Punjab, Pakistan

Abstract

Leptin is a polypeptide hormone produced in the adipose tissue and governs many processes in the body. Recently, polymorphisms in the LEP gene revealed a significant change in body weight regulation, energy balance, food intake, and reproductive hormone secretion. This study considers its crucial role in the regulation of the economically important traits of sheep. Several computational tools, including SIFT, Predict SNP2, SNAP2, and PROVEAN, have been used to screen out the deleterious nsSNPs. Following the screening of 11 nsSNPs in the sheep genome, 5 nsSNPs, T86M (C → T), D98N (G → A), N136T (A → C), R142Q (G → A), and P157Q (C → A), were predicted to have a significant deleterious effect on the LEP protein function, leading to phenotypic difference. The analysis of proteins’ stability change due to amino acid substitution using the I-stable, SDM, and DynaMut consistently confirmed that three nsSNPs (T86M (C → T), D98N (G → A), and P157Q (C → A)) increased protein stability. It is suggested that these three nsSNPs may enhance the evolvability of LEP protein, which is vital for the evolutionary adaptation of sheep. Our findings demonstrate that the five nsSNPs reported in this study might be responsible for sheep’s structural and functional modifications of LEP protein. This is the first comprehensive report on the sheep LEP gene. It narrow downs the candidate nsSNPs for in vitro experiments to facilitate the development of reliable molecular markers for associated traits.

Funder

Samara University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3