Delayed Drainage of a Largely Deformed Aquitard due to Abrupt Water Head Decline in Adjacent Aquifer

Author:

Li Zhaofeng12,Zhou Zhifang3,Li Mingyuan3,Zhang Boran3,Dai Beibing2ORCID

Affiliation:

1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China

2. School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China

3. School of Earth Science and Engineering, Hohai University, Nanjing 210098, China

Abstract

A governing equation of drawdown was put forward to describe the one-dimensional large-strain consolidation behavior of an aquitard without consideration of the creeping effect. An analytical solution was derived to characterize the drawdown variation in the aquitard subjected to sudden hydraulic head decline in adjacent confined aquifer. The characteristics of the groundwater dynamics and water balance in the aquitard have been analyzed based on the analytical solution. A comparison analysis of results has been made between the large-strain theory and the classical small-strain theory. The type-curve fitting method was used to determine the hydrogeological parameters, on the basis of the observed variations of aquitard deformation with time. The analytical solution was thus validated by a comparison with the observed experimental results. It is found that the water drainage of aquitard is obviously delayed in response to the water head decline in the adjacent aquifer. All delayed water release from the aquitard terminates when the consolidation time reaches the value of l2/cv0. The aquitard deformation predicted by the large-strain theory is less than that given by the small-strain theory, and the prediction discrepancy of these two theories increases with the increasing soil compressibility.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3