Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury

Author:

Liang Shao1ORCID,Ping Zhang2ORCID,Ge Jin1ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China

2. Department of Geriatrics & Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China

Abstract

Background. Oxidative stress and autophagy both play key roles in continuous cardiomyocyte death and cardiac dysfunction after reperfusion therapy for acute myocardial ischemia-reperfusion injury. Coenzyme Q10 (CQ10), which is a fat-soluble quinone antioxidant, is involved in the pathophysiological processes of neurodegenerative diseases, cancer, diabetes, heart failure, and other diseases. Our objective was to determine if, and by what mechanism, CQ10 can ameliorate acute myocardial ischemia-reperfusion injury and improve heart function. Methods and Results. Fat-soluble CQ10 in soybean oil solvent was preconditioned in rats with acute myocardial ischemia-reperfusion injury by intraperitoneal injection. Oxidant and antioxidant levels were compared between the preconditioned and control groups. Autophagy was measured by Western blotting analysis of autophagy proteins. Proapoptotic proteins and immunofluorescence were used to assess cell apoptosis. Infarct size was determined by triphenyl tetrazolium chloride (TTC) staining and Evans blue staining and visualized myocardial pathology by tissue staining. Finally, we assessed cardiac function by electrocardiography (ECG) and hemodynamics. Conclusions. This study reveals that CQ10 preconditioning regulates antioxidant levels and the oxidant balance, enhances autophagy, reduces myocardial apoptosis and death, and improves cardiac function in rats with acute ischemia-reperfusion injury. These results imply that CQ10 protects against acute myocardial ischemia-reperfusion injury via the antioxidative stress and autophagy pathways.

Funder

Wenzhou Municipal Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3