Transverse Free Vibration of Axially Moving Stepped Beam with Different Length and Tip Mass

Author:

Ma Guoliang1,Xu Minglong1,Chen Liqun2,An Zengyong1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

2. Department of Mechanics, Shanghai University, Shanghai 200444, China

Abstract

Axially moving stepped beam (AMSB) with different length and tip mass is represented by adopting Euler-Bernoulli beam theory, and its characteristics and displacements of transverse free vibration are calculated by using semianalytical method. Firstly, the governing equation of the transverse free vibration is established based on Hamilton’s principle. The equation is cast into eigenvalue equation through the complex modal analysis. Then, a scheme is proposed to derive the continuous condition accordingly as the displacement, rotation, bending moment, and shear force are all equal at the connections of any two segments. Another scheme is to derive frequency equation from the given boundary conditions which contain a tip mass in the last segment. Finally, the natural frequency and modal function are calculated by using numerical method according to the eigenvalue equation and frequency equation. Due to the introduction of modal truncation, displacement and, the free vibration solution can be obtained by adopting modal superposition after Hilbert transform. The numerical examples illustrate that length, velocity, mass, and geometry affect characteristics and displacements significantly; the series of methods are effective and accurate to investigate the vibration of the AMSB with different length and tip mass after comparing several results.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3