Experimental Test of Artificial Potential Field-Based Automobiles Automated Perpendicular Parking

Author:

Dong Yiqun123ORCID,Zhang Youmin2,Ai Jianliang1

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai, China

2. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada

3. School of Electric and Electronic Engineering (EEE), Nanyang Technological University, Singapore

Abstract

Automobiles automated perpendicular parking using Artificial Potential Field (APF) is discussed in this paper. The Unmanned Ground Vehicle (UGV) used for carrying out experiments is introduced first; UGV configuration, kinematics, and motion controller are included. Based on discretized form of the parking space, the APF is generated. Holonomic path for the vehicle parking is found first; path modification to satisfy minimum turning-radius constraint is performed based on Reeds-Shepp curve connections. Optimization efforts are included to remove extra maneuvers and to reduce length of the path. Afterwards waypoints are generated as reference for the vehicle to track. Perpendicular parking tests with several different start configurations are demonstrated; based on the test results the automated parking framework proposed in this paper is considered to be effective.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Mechanical Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path Planning of Automatic Parking System by a Point-Based Genetic Algorithm;Pattern Recognition and Computer Vision;2023-12-25

2. Neural Motion Planning for Autonomous Parking;International Journal of Control, Automation and Systems;2023-03-16

3. Experimental Test of Unmanned Ground Vehicle Delivering Goods Using RRT Path Planning Algorithm;Unmanned Systems;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3