An LSTM-Based Prediction Method for Lower Limb Intention Perception by Integrative Analysis of Kinect Visual Signal

Author:

He Jie1,Guo Zhexiao1,Shao Ziwei1,Zhao Junhao2,Dan Guo13ORCID

Affiliation:

1. School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518056, China

2. Zhejiang Provincial Hospital of Traditional Clinical Medical, Hangzhou 310006, China

3. Shenzhen Institute of Neuroscience, Shenzhen 518060, China

Abstract

Recently, computer vision and deep learning technology has been applied in various gait rehabilitation researches. Considering the long short-term memory (LSTM) network has been proved an excellent performance in learn sequence feature representations, we proposed a lower limb joint trajectory prediction method based on LSTM for conducting active rehabilitation on a rehabilitation robotic system. Our approach based on synergy theory exploits that the follow-up lower limb joint trajectory, i.e. limb intention, could be generated by joint angles of the previous swing process of upper limb which were acquired from Kinect platform, an advanced computer vision platform for motion tracking. A customize Kinect-Treadmill data acquisition platform was built for this study. With this platform, data acquisition on ten healthy subjects is processed in four different walking speeds to acquire the joint angles calculated by Kinect visual signals of upper and lower limb swing. Then, the angles of hip and knee in one side which were presented as lower limb intentions are predicted by the fore angles of the elbow and shoulder on the opposite side via a trained LSTM model. The results indicate that the trained LSTM model has a better estimation of predicting the lower limb intentions, and the feasibility of Kinect visual signals has been validated as well.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3