Interaction of Cyclic Loading (Low-Cyclic Fatigue) with Stress Corrosion Cracking (SCC) Growth Rate

Author:

Bashir Rehmat12,Xue He1ORCID,Guo Rui1ORCID,Bi Yueqi1ORCID,Usman Muhammad2

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Department of Mechanical Engineering, University of Engineering and Technology (Main Campus), Lahore 54890, Pakistan

Abstract

The structural integrity analysis of nuclear power plants (NPPs) is an essential procedure since the age of NPPs is increasing constantly while the number of new NPPs is still limited. Low-cyclic fatigue (LCF) and stress corrosion cracking (SSC) are the two main causes of failure in light-water reactors (LWRs). In the last few decades, many types of research studies have been conducted on these two phenomena separately, but the joint effect of these two mechanisms on the same crack has not been discussed yet though these two loads exist simultaneously in the LWRs. SCC is mainly a combination of the loading, the corrosive medium, and the susceptibility of materials while the LCF depends upon the elements such as compression, moisture, contact, and weld. As it is an attempt to combine SCC and LCF, this research focuses on the joint effect of SCC and LCF loading on crack propagation. The simulations are carried out using extended finite element method (XFEM) separately, for the SCC and LCF, on an identical crack. In the case of SCC, da/dt(mm/sec) is converted into da/dNScc (mm/cycle), and results are combined at the end. It has been observed that the separately calculated results for SCC da/dNScc and LCF da/dNm of crack growth rate are different from those of joint/overall effect, da/dNom. By applying different SCC loads, the overall crack growth is measured as SCC load becomes the main cause of failure in LWRs in some cases particularly in the presence of residual stresses.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference40 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3