Bioinformatic Analysis Identifies Biomarkers and Treatment Targets in Primary Sjögren’s Syndrome Patients with Fatigue

Author:

Chen Guangshu1ORCID,Che Li2ORCID,Cai Xingdong2ORCID,Zhu Ping1ORCID,Ran Jianmin1ORCID

Affiliation:

1. Department of Endocrinology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China

2. Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China

Abstract

We aim to identify the common genes, biological pathways, and treatment targets for primary Sjögren’s syndrome patients with varying degrees of fatigue features. We select datasets about transcriptomic analyses of primary Sjögren’s syndrome (pSS) patients with different degrees of fatigue features and normal controls in peripheral blood. We identify common differentially expressed genes (DEGs) to find shared pathways and treatment targets for pSS patients with fatigue and design a protein-protein interaction (PPI) network by some practical bioinformatic tools. And hub genes are detected based on the PPI network. We perform biological pathway analysis of common genes by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Lastly, potential treatment targets for pSS patients with fatigue are found by the Enrichr platform. We discovered that 27 DEGs are identified in pSS patients with fatigue features and the severe fatigued pSS-specific gene is RTP4. DEGs are mainly localized in the mitochondria, endosomes, endoplasmic reticulum, and cytoplasm and are involved in the biological process by which interferon acts on cells and cells defend themselves against viruses. Molecular functions mainly involve the process of RNA synthesis. The DEGs of pSS are involved in the signaling pathways of viruses such as hepatitis C, influenza A, measles, and EBV. Acetohexamide PC3 UP, suloctidil HL60 UP, prenylamine HL60 UP, and chlorophyllin CTD 00000324 are the four most polygenic drug molecules. PSS patients with fatigue features have specific gene regulation, and chlorophyllin may alleviate fatigue symptoms in pSS patients.

Funder

Guangdong Science and Technology Project Fund for Key Scientific Research Base

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3