Research on Music Content Recognition and Recommendation Technology Based on Deep Learning

Author:

Yang Gao1ORCID

Affiliation:

1. Qilu Normal University, Shandong 250200, China

Abstract

With the development of information technology, various cloud music services are gradually emerging, which has fully changed and enriched people’s music life. How to propose the songs that consumers anticipate from the enormous song data is one of the key goals of the music recommendation system. This research aims to create a better music algorithm that incorporates user data for deep learning, a candidate matrix compression technique for suggestion improvement, accuracy, recall rate, and other metrics as evaluation criteria. In terms of recommendation methods, the music-music recommendation method based on predicting user behavior data and the recommendation method based on automatic tag generation are proposed. The music features obtained by audio processing are fully utilized, and the depth content information in music audio data is combined with other data for recommendation, which improves the tag quality and avoids the problem of low coverage. The results show that this model can extract the effective feature representation of songs in different classification criteria and achieve a good classification effect simultaneously.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3