Affiliation:
1. College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
2. Department of Computer Science and Technology, Langfang Teachers University, Langfang 065000, China
Abstract
Lane detection is a crucial process in video-based transportation monitoring system. This paper proposes a novel method to detect the lane center via rapid extraction and high accuracy clustering of vehicle motion trajectories. First, we use the activity map to realize automatically the extraction of road region, the calibration of dynamic camera, and the setting of three virtual detecting lines. Secondly, the three virtual detecting lines and a local background model with traffic flow feedback are used to extract and group vehicle feature points in unit of vehicle. Then, the feature point groups are described accurately by edge weighted dynamic graph and modified by a motion-similarity Kalman filter during the sparse feature point tracking. After obtaining the vehicle trajectories, a roughk-means incremental clustering with Hausdorff distance is designed to realize the rapid online extraction of lane center with high accuracy. The use of rough set reduces effectively the accuracy decrease, which results from the trajectories that run irregularly. Experimental results prove that the proposed method can detect lane center position efficiently, the affected time of subsequent tasks can be reduced obviously, and the safety of traffic surveillance systems can be enhanced significantly.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献