Multiresolution Mutual Assistance Network for Cardiac Magnetic Resonance Images Segmentation

Author:

Chen Shaolong1ORCID,Qiu Changzhen1ORCID,Yang Weiping1ORCID,Zhang Zhiyong1ORCID

Affiliation:

1. School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China

Abstract

The automatic segmentation of cardiac magnetic resonance (MR) images is the basis for the diagnosis of cardiac-related diseases. However, the segmentation of cardiac MR images is a challenging task due to the inhomogeneity of MR images intensity distribution and the unclear boundaries between adjacent tissues. In this paper, we propose a novel multiresolution mutual assistance network (MMA-Net) for cardiac MR images segmentation. It is mainly composed of multibranch input module, multiresolution mutual assistance module, and multilabel deep supervision. First, the multibranch input module helps the network to extract local and global features more pertinently. Then, the multiresolution mutual assistance module implements multiresolution feature interaction and progressively improves semantic features to more completely express the information of the tissue. Finally, the multilabel deep supervision is proposed to generate the final segmentation map. We compare with state-of-the-art medical image segmentation methods on the medical image computing and computer-assisted intervention (MICCAI) automated cardiac diagnosis challenge datasets and the MICCAI atrial segmentation challenge datasets. The mean dice scores of our method in the left atrium, right ventricle, myocardium, and left ventricle are 0.919, 0.920, 0.881, and 0.960, respectively. The analysis of evaluation indicators and segmentation results shows that our method achieves the best performance in cardiac magnetic resonance images segmentation.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3