InSilc Computational Tool for In Silico Optimization of Drug-Eluting Bioresorbable Vascular Scaffolds

Author:

Milosevic Miljan123ORCID,Anic Milos14ORCID,Nikolic Dalibor12ORCID,Milicevic Bogdan14ORCID,Kojic Milos156ORCID,Filipovic Nenad14ORCID

Affiliation:

1. Bioengineering Research and Development Center, BioIRC, Kragujevac, Serbia

2. Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia

3. Belgrade Metropolitan University, Belgrade, Serbia

4. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

5. Houston Methodist Research Institute, Department of Nanomedicine, Houston, USA

6. Serbian Academy of Sciences and Arts, Belgrade, Serbia

Abstract

Stents made by different manufacturers must meet the requirements of standard in vitro mechanical tests performed under different physiological conditions in order to be validated. In addition to in vitro research, there is a need for in silico numerical simulations that can help during the stent prototyping phase. In silico simulations have the ability to give the same stent responses as well as the potential to reduce costs and time needed to carry out experimental tests. The goal of this paper is to show the achievements of the computational platform created as a result of the EU-funded project InSilc, used for numerical testing of most standard tests for validation of preproduction bioresorbable vascular scaffolds (BVSs). Within the platform, an ad hoc simulation protocol has been developed based on the finite element (FE) analysis program PAK and user interface software CAD Field and Solid. Two different designs of two different stents have been numerically simulated using this integrated tool, and the results have been demonstrated. The following standard tests have been performed: longitudinal tensile strength, local compression, kinking, and flex 1-3. Strut thickness and additional pocket holes (slots) in two different scaffolds have been used as representative parameters for comparing the mechanical characteristics of the stents (AB-BVS vs. AB-BVS-thinner and PLLA-prot vs. PLLA-plot-slot). The AB-BVS-thinner prototype shows better overall stress distribution than the AB-BVS, while the PLLA-prot shows better overall stress distribution in comparison to the PLLA-plot-slot. In all cases, the values of the maximum effective stresses are below 220 MPa—the value obtained by in vitro experiment. Despite the presented results, additional considerations should be included before the proposed software can be used as a validation tool for stent prototyping.

Funder

University of Kragujevac

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Three-Dimensional Reconstruction of Patient-Specific Carotid Bifurcation Using Deep Learning Based Segmentation of Ultrasound Images;Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3