DIC-Based Operational Modal Analysis of Bridges

Author:

Chen Gongfa1,Wu Zhihua1ORCID,Gong Chunjian1,Zhang Jiqiao1ORCID,Sun Xiaoli2

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China

2. Guangzhou Municipal Engineering Testing Co. Ltd, Guangzhou, 510520, China

Abstract

A new method has been proposed to identify the natural frequencies and mode shapes of a bridge model, in which the digital image correlation (DIC) technique is used to track the dynamic displacement. A key issue in vibration-based damage detection for a bridge is to determine its modal parameters. It is difficult to use traditional acceleration sensors to obtain the accurate mode shapes of bridges as the sensors are only deployed on a few measurement points of the bridges. In this article, the DIC technique is used to capture the movement of the entire experimental bridge model. A steel truss is used as a bridge model and stimulated by a hammer; its dynamic displacement is recorded by using a digital video camera. The correlation analysis is used to track the displacement of the points of interest, and their displacement time histories are inputted into a modal analysis system; the natural frequencies and mode shapes of the bridge model were obtained by both operational modal analysis (OMA) and traditional experimental modal analysis (EMA) methods. (1) The DIC results are compared with those obtained by a traditional acceleration sensor-based method; the natural frequencies obtained by the two measurement methods are very close. (2) The DIC results are sensitive to the amplitude of the measured displacement and the shooting distance; small displacement amplitudes and long shooting distance may result in the low quality of the measured time-history curves, and low-frequency noise signals might be observed in their power spectral density (PSD) curves, while they can be easily solved by the filtering method in this article. (3) In addition, the first frequencies obtained by EMA and OMA are very close, which validates the applicability of the DIC measurement under ambient excitation. The research has illustrated the feasibility of the DIC method for obtaining the modal parameters of the bridges.

Funder

Guangdong University of Technology

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3