Numerical Simulation on the Whole Sinking Process of Open Caisson with an Improved SPH Method

Author:

Zhang Jiahe1ORCID

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

The phenomena of dynamic change in the material interfaces and mechanical properties are often involved in the caisson construction. Using conventional methods to simulate these phenomena is quite difficult due to the extremely large deformation. In this study, we proposed an improved soil-water-caisson interaction algorithm with the method of smoothed-particle hydrodynamics (SPH). This algorithm dealt with the support domain truncation of the particles near the blade and applied δ SPH to avoid the pressure fluctuation. Meanwhile, the application of dynamic particles birth and death method could simulate the whole sinking process of an open caisson with underwater soil excavation. According to the comparison between SPH simulation and centrifuge test, the distribution of sidewall effective soil pressure was consistent, which indicated promising applicability of the algorithm. It should be noted that the considerable excess pore water pressure appeared in the surrounding soil under the blade. With the dissipation of the pressure over time, the effective soil stress increased correspondingly, and it would lead to the increasing difficulty of the sinking process. Therefore, the caisson should be avoided to stop for a long time during the sinking process or it would cause the stagnation of sinking. This algorithm could simulate engineering problems involving underwater construction effectively and provide theoretical and technical support for underwater excavation, shield tunneling, and other engineering problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3