Affiliation:
1. Department of Applied Technology, Shenyang University, Shenyang 110000, Liaoning, China
Abstract
In this paper, we study the radial neural network algorithm for low-carbon circular economy in forest area, design a coupled development evaluation model, study its algorithmic ideas operation mode and the update formula obtained by standard algorithm, and finally optimize the RBF neural network by particle swarm algorithm. After an in-depth analysis of the particle swarm algorithm, an improved particle swarm algorithm is proposed to improve the search accuracy and capability of the algorithm by nonlinearly adjusting the inertia weights and introducing the average extreme value factor, in response to the problems of premature convergence and poor search capability that appear in the particle swarm algorithm. Through the analysis and evaluation of the interaction between industrial ecosystem and carbon emission, the main influencing factors of carbon emission are identified, and the size and magnitude of the influence of economic growth, industrial structure, energy intensity, and energy structure on carbon emission are determined; the current situation of the industrial ecological structure is evaluated, and the direction of optimization and adjustment of industrial economic structure, energy structure, and ecological structure is clarified. We construct a multidimensional multiconstraint multimodel industrial ecological structure optimization prediction model, set the development scenarios of economy and society, and optimize the prediction of low-carbon industrial ecological structure in forest areas; based on the simulation analysis of the prediction results, we propose the direction of industrial ecological structure adjustment and the path of industrial ecological system construction.
Subject
Multidisciplinary,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献