New Strategy of Reducing Biofilm Forming Bacteria in Oral Cavity by Bismuth Nanoparticles

Author:

Rostamifar Sahar1ORCID,Azad Azita2ORCID,Bazrafkan Ali1ORCID,Modaresi Farzan3ORCID,Atashpour Shekoufeh4ORCID,Jahromi Zahra Kargar5ORCID

Affiliation:

1. Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

2. Oral and Dental Disease Research Center, Department of Oral & Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

3. Departments of Microbiology, Advanced Medical Sciences and Technology, and Central Laboratory Research, Jahrom University of Medical Sciences, Jahrom, Iran

4. Departments of Pharmacology, Advanced Medical Sciences and Technology, and Central Laboratory Research, Jahrom University of Medical Sciences, Jahrom, Iran

5. Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran

Abstract

Objective. Enterococcus faecalis and Streptococcus salivarius are the most important species in dental decay and producing biofilm. Treatment with chlorhexidine 2% mouthwash for 7 days is the best way to eliminate these bacteria. However, due to the ability of these bacteria to survive in harsh environments, increasing emergence of bacterial resistance against available antibiotics, and favorable properties of nanoparticles including broad spectrum antimicrobial activity and lower toxicity, we decided to evaluate reducing biofilm forming bacteria in oral cavity by bismuth nanoparticles. Materials and Methods. This was a cross-sectional study of 40 samples isolated from the patients visiting dental clinics in Shiraz in 2019. Samples, which showed growth, were cultured on blood agar plates and incubated for the PCR procedure. Nanoparticle powder was dissolved in high-purity water, and the final concentration of bismuth nanoparticles (BiNPs) was measured with a spectrophotometer. Minimum inhibitory concentration (MIC) of BiNPs against E. faecalis and S. salivarius was determined by the microbroth dilution method according to methods for antimicrobial susceptibility tests. Also, bactericidal assays were conducted in a Mueller-Hinton broth medium and reported as the concentration of BiNPs that reduced the viable bacterial count by 99.9%. Statistical analysis was carried out using SPSS 21 and one-way analysis of variance, and P values less than 0.05 were considered significant. Results. MICs of BiNP suspension against Streptococcus salivarius and Enterococcus faecalis were 2.5 and 5 μg/ml, respectively. Minimum bactericidal concentrations (MBC) of BiNP suspension against Streptococcus salivarius and Enterococcus faecalis were 5 and 10 μg/ml, respectively. Antibacterial activity of BiNPs was compared with chlorhexidine 2%. MICs of BiNPs against Streptococcus salivarius and Enterococcus faecalis were one-twentieth less than those of chlorhexidine. MBC of BiNPs against both pathogens was one-tenth less than those of chlorhexidine. Conclusion. BiNPs were more effective than chlorhexidine, and MIC and MBC of bismuth nanoparticles are lower than those of chlorhexidine.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3