Affiliation:
1. College of Science, Guilin University of Technology, Guilin 541004, China
2. Department of Mechanical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
Abstract
The nonlinear flow behaviors of BT22 alloy were investigated by thermal simulation experiments at different temperature and strain rates. Taking the experimental stress-strain data as samples, the support vector regression (SVR) model and back propagation artificial neural network (BPANN) model were established by cross-validation (CV) method to describe the nonlinear flow behaviors of BT22 alloy. Genetic algorithm (GA) was used to optimize the parameters of the SVR model and establish the GA-SVR model. At the same time, the physical model optimized by GA algorithm is compared with the machine learning model. Average absolute relative error (AARE), absolute relative error (ARE), and correlation coefficient (R) were used to evaluate the predictive ability of the four models. The results show that the order of model accuracy and generalization ability is GA-SVR > BPANN > SVR > physical model. The AARE value of the GA-SVR model is 1.5752%, and the R value is as high as 0.9984, which can accurately predict the flow behaviors of BT22 alloy. According to the GA-SVR model, the flow behaviors under other conditions could be predicted to expand the experimental stress-strain data and avoid a large number of artificial tests.
Funder
Natural Science Foundation of Guangxi Province
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献