Affiliation:
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2. Ministry of Transport Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract
Understanding human mobility patterns is of great importance for a wide range of applications from social networks to transportation planning. Toward this end, the spatial-temporal information of a large-scale dataset of taxi trips was collected via GPS, from March 10 to 23, 2014, in Beijing. The data contain trips generated by a great portion of taxi vehicles citywide. We revealed that the geographic displacement of those trips follows the power law distribution and the corresponding travel time follows a mixture of the exponential and power law distribution. To identify human mobility patterns, a topic model with the latent Dirichlet allocation (LDA) algorithm was proposed to infer the sixty-five key topics. By measuring the variation of trip displacement over time, we find that the travel distance in the morning rush hour is much shorter than that in the other time. As for daily patterns, it shows that taxi mobility presents weekly regularity both on weekdays and on weekends. Among different days in the same week, mobility patterns on Tuesday and Wednesday are quite similar. By quantifying the trip distance along time, we find that Topic 44 exhibits dominant patterns, which means distance less than 10 km is predominant no matter what time in a day. The findings could be references for travelers to arrange trips and policymakers to formulate sound traffic management policies.
Funder
National Key R&D Program of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献