Performance Improvements of AODV by Black Hole Attack Detection Using IDS and Digital Signature

Author:

Talukdar Md Ibrahim1ORCID,Hassan Rosilah2ORCID,Hossen Md Sharif1ORCID,Ahmad Khaleel3ORCID,Qamar Faizan2ORCID,Ahmed Amjed Sid4ORCID

Affiliation:

1. Department of Information and Communication Technology (ICT), Comilla University, Cumilla, Bangladesh

2. Centre for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia

3. Department of Computer Science and Information Technology, Maulana Azad National Urdu University, Hyderabad, India

4. Computing Department, Engineering Faculty, Global College of Engineering and Technology, Oman

Abstract

In mobile ad hoc networks (MANETs), mobile devices connect with other devices wirelessly, where there is no central administration. They are prone to different types of attacks such as the black hole, insider, gray hole, wormhole, faulty node, and packet drop, which considerably interrupt to perform secure communication. This paper has implemented the denial-of-service attacks like black hole attacks on general-purpose ad hoc on-demand distance vector (AODV) protocol. It uses three approaches: normal AODV, black hole AODV (BH_AODV), and detected black hole AODV (D_BH_AODV), wherein we observe that black holes acutely degrade the performance of networks. We have detected the black hole attacks within the networks using two techniques: (1) intrusion detection system (IDS) and (2) encryption technique (digital signature) with the concept of prevention. Moreover, normal AODV, BH_AODV, and D_BH_AODV protocols are investigated for various quality of service (QoS) parameters, i.e., packet delivery ratio (PDR), delay, and overhead with varying the number of nodes, packet sizes, and simulation times. The NS2 software has been used as a simulation tool to simulate existing network topologies, but it does not contain any mechanism to simulate malicious protocols by itself; therefore, we have developed and implemented a D_BH_AODV routing protocol. The outcomes show that the proposed D_BH_AODV approach for the PDR value delivers around 40 to 50% for varying nodes and packets. In contrast, the delay decreases from 300 to 100 ms and 150 to 50 ms with an increase in the number of nodes and packets, respectively. Furthermore, the overhead changes from 1 to 3 for various nodes and packet values. The outcome of this research proves that the black hole attack degrades the overall performance of the network, while the D_BH_AODV enhances the QoS performance since it detects the black hole nodes and avoids them to establish the communication between nodes.

Funder

ICT Division of the Bangladesh Government

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3