Antimicrobial Activity of Thermocycled Polymethyl Methacrylate Resin Reinforced with Titanium Dioxide and Copper Oxide Nanoparticles

Author:

Giti Rashin1ORCID,Zomorodian Kamiar2ORCID,Firouzmandi Maryam3ORCID,Zareshahrabadi Zahra4ORCID,Rahmannasab Sedigheh5ORCID

Affiliation:

1. Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

2. Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3. Department of Operative Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

4. Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

5. Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Aims. This study aimed to evaluate the effect of 2.5% and 7.5% copper oxide (CuO) and titanium dioxide (TiO2) nanoparticles on the antimicrobial activity of thermocycled polymethyl methacrylate (PMMA) denture base material against standard strains of yeast and bacteria species. Material and Methods. In this in vitro study, 150 disk-shaped (10 × 2 mm) specimens of heat-cured PMMA were prepared and divided into five groups (n = 30) to be reinforced with 2.5% CuO, 7.5% CuO, 2.5% TiO2, or 7.5% TiO2 nanoparticles and a control group (without nanoparticle). The specimens were thermocycled, and their antimicrobial activity was assessed against standard strains of yeast including Candida albicans and C. dubliniensis and oral bacteria species including Streptococcus mutans, S. sobrinus, S. salivarius, and S. sanguis. Data were analyzed with ANOVA and Tukey’s post hoc tests (α = 0.05). Results. Both concentrations of CuO and TiO2 nanoparticles had significant antimicrobial activity against S. salivarius, S. sanguis, and C. dubliniensis compared with the control group ( P  < 0.05). Significant differences existed between both 2.5% ( P  = 0.006) and 7.5% CuO ( P  = 0.005) and the control group against S. mutans. However, TiO2 groups were not significantly different from the control group against S. mutans. Concerning C. albicans, 7.5% TiO2 was the only nanoparticle with significantly higher antimicrobial activity compared with the control group ( P  = 0.043). Conclusions. Both concentrations of CuO and TiO2 were effective antimicrobial agents against S. salivarius, S. sanguis, and C. dubliniensis, and the concentration of CuO was effective against S. mutans. Yet, TiO2 was not much effective. Regarding C. albicans, only 7.5% TiO2 showed efficient antimicrobial activity.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3