Interactional Effect of the Influential Parameters on Seismic Behaviour of the Concrete Surface Tanks

Author:

Hassanpour Yasaghi Alirezar1,Fatahi Mazhar2ORCID,Seyed Alizadeh Seyed Mehdi3

Affiliation:

1. Department of Civil Engineering, Islamic Azad University, Mashhad, Iran

2. Department of Civil Engineering, Loghman Hakim Golestan Non-Profit Institute, Agh-Ghala, Iran

3. Petroleum Engineering Department, Australian College of Kuwait, West Mishref, Kuwait, Kuwait

Abstract

Given to the importance of the tanks and their various applications in different industries, studying the seismic behaviour of these facilities is essential. In such structures, obtaining exact theoretical solution for the seismic behaviour of the tanks is very difficult due to the existence of the soil-structure interaction. In this study, seismic behaviour studying has been taken into account and in addition to considering three-dimensional model of finite element model of a surface rectangular tank and its beneath soil given to SSI and FSI effect, we have done required analysis and Drucker–Prager nonlinear model has been used to investigating more exactly to describe soil behaviour. Euler–Lagrange view with optional mesh displacement has been used for modelling tank-water interaction. According to the obtained results from this modelling, soil beneath the tank and soil-structure interaction affect highly on seismic behaviour of the surface tanks. Meanwhile, the response of the structure to the density changes and soil modulus of elasticity is more sensitive and changes in the coefficient of friction coefficient between the foundation surface and the soil and the internal friction angle do not have tangible effect on the response. The results reveal that the liquid containers response is more sensitive to the changes of the density and the soil modulus of elasticity more than friction coefficient between the surfaces and foundation and internal angle friction.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3