Research on the Influence of the Key Stratum Position on the Support Working Resistance during Large Mining Height Top-Coal Caving Mining

Author:

Zhang Baisheng1ORCID,Yang Zhiping1,Ji Chunxu1,Guo Zefeng1,Li Haoyang1

Affiliation:

1. Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

Abstract

In recent years, in order to increase the coal recovery rate, the large mining height fully mechanized top-coal caving mining has been widely used because it has the advantages of both fully mechanized mining method and large mining height mining method. When this mining technology is used to exploit thick coal seam under upper goaf, the movement characteristics of the overlying strata and the bearing structure formed by the broken rock are complicated, which results in the abnormal pressure during mining, such as severe coal slabs and hydraulic supports being crushed. The key to solve these problems is to study the movement law and the structural evolution characteristics of the overlying strata during large mining height fully mechanized top-coal caving mining, and the movement characteristics of the overlying strata are all determined by the layer-position of the key stratum. UDEC models with different layer-position of the key stratum are established to investigate the influence of the key stratum position on the support working resistance during large mining height top-coal caving mining. Through comprehensive research, the source of support resistance comes from under different geological conditions was analyzed, and the formula for estimating the maximum support working resistance was deduced. In addition, in order to release the severe pressure during large mining height fully mechanized top-coal caving mining, it is recommended to use hydraulic fracturing method to weaken the key stratum in situ.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3