Thermal Performance Study on a Sensible Cool Thermal Energy Storage System for Building Air-Conditioning Applications

Author:

Muthaiyan Kesavan1ORCID,Lakshmanan Chidambaram1,Raj Kaiwalya2,Sharma Mangat Ram2,Narayanasamy Rajamani2ORCID,Vellaichamy Pandiyarajan3ORCID,Ramalingam Velraj2ORCID

Affiliation:

1. Mechanical Engineering, Annamalai University, Annamalainagar, 608002, India

2. Institute for Energy Studies, CEG, Anna University, Chennai 600 025, India

3. Department of Chemical Engineering, Anna University, Chennai 600 025, India

Abstract

In most developed and developing nations, nearly 40% of the energy generated is utilized in the building sector, in which nearly 50% of the energy is consumed by building cooling/heating systems. However, the energy requirement for building cooling/heating varies continuously with respect to time. Hence, in hot countries, if the cooling system is integrated with a storage system, the cooling system need not be designed for the peak load requirement. Further, this kind of storage system is very useful and economically beneficial in the scenario of dynamic electricity tariff, being introduced in many countries in the emerging renewable energy scenario to solve the grid stability issues. Further, it is very useful to promote microgrid with distributed renewable power generation. Considering the above, the major objective of the present research is to demonstrate the integration of the air-conditioning system with a sensible heat storage unit for residential applications. An experimental setup is constructed, and experiments were conducted to evaluate the heat exchange behavior during the charging and discharging process by varying the inlet temperature and the mass flow rate of the heat exchange fluid through the circuit. It is observed that the set temperature of the cool storage tank is to be maintained above +5°C to achieve better efficiency during the charging process. During the discharging process, the room could be maintained at the required comfort condition for a duration of 285 min with 29 cycles of operations between the set point temperature limits of 25°C to 28°C. When the inlet brine temperature of the cooling unit reached 20°C, in the next cycle, bringing down the room temperature again to 25°C could not be achieved. The results shown in this work are beneficial for efficiently operating the cooling system and useful in promoting renewable energy in the near future in the building sector. Also, the low-temperature sensible heat storage system is capable of maintaining the storage temperature at approximately +4°C, instead of -4°C normally employed in the case of latent heat-based storage system that allows higher performance in the sensible heat storage system.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3