Migration Simulation of Radioactive Soil Particles in the Atmospheric Environment Using CFD-DEM Coupled with Empirical Formulas

Author:

Chen Liwei12ORCID,Chen Chunhua2ORCID,Fan Qingchun1,Yang Zihui2,Zheng Zihao2,Wang Jianye2

Affiliation:

1. School of Computer Science and Technology, Hefei Normal University, Hefei, Anhui 230601, China

2. Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract

Radioactive particle migration from the soil surface is an unignorable factor for the radioactive material distribution prediction after a nuclear accident, especially for the decision support of radioactive disposal. Considering the continuous emission, collision, and reattachment of radioactive particles, a creative simulation method with a coupled model was proposed, which combines an empirical model and the CFD-DEM method, and was established to simulate the secondary emission and motion of radioactive particles. The source term of the radioactive particles is estimated by an empirical model as the input of the CFD-DEM. Regarding the characteristics of the particle motion, the spout-fluidized bed simulation by the coupled model is consistent with the referred simulation results and experimental data, which validates the correctness of this model. The coupling model was applied to simulate the radioactive particle distribution and migration on the nonconfined backward facing step (NBFS). The simulation reveals that the distribution features and migration flux of the radioactive particles can be estimated in detail by the proposed model, which can help to provide more actual information for radioactive disposal after nuclear accidents.

Funder

Natural Science Foundation of the Anhui Higher Education Institutions of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3