Fabrication of Hybrid Materials Based on Waste Polyethylene/Porous Activated Metakaolinite Nanocomposite as an Efficient Membrane for Heavy Metal Desalination Processes

Author:

Mubarak Mahmoud F.1ORCID,Zayed Mohamed A.2ORCID,Nafady Ayman3ORCID,Shahawy Abeer E. L.4ORCID

Affiliation:

1. Applications Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer, Nasr City, Box. No., 11727 Cairo, Egypt

2. Chemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Civil Engineering, Faculty of Engineering, Suez Canal University, Box 41522, Ismailia, Egypt

Abstract

Hybrid nanostructure materials derived from activated metakaolinite are of growing importance due to their intriguing structural/functional properties and promising biomedical/environmental applications, especially designing desalination membranes. Herein, we report procedures to design and fabricate membranes based on waste polyethylene/porous activated-metakaolinite thin film nanocomposites (WPE/PAMK-TFN). It has been devoted to improving water desalination processes, where efficient removal of trace level (~250 ppm) of toxic heavy metals such as Cd(II), Pb(II), and Cu(II) ions from synthetic wastewater solutions was highly accomplished. Physicochemical techniques such as X-ray diffraction (XRD), surface analysis (BET), and Fourier transform infrared spectroscopy (FTIR) have been extensively employed to elucidate the structure/composition of the prepared nanomaterials. The effect of concentration (0–0.5 wt%) of porous activated-metakaolinite (PAMK) on water permeation was investigated. The results obtained revealed that 0.5 wt% of PAMK clay particles produced the highest dispersion, as evident by SEM images of the nanocomposite membranes. Significantly, the constructed membrane showed marked improvements in porosity, hydrophilicity, and hydraulic resistance. Moreover, elemental mapping studies have confirmed the intercalation of activated bentonite clay within the polymer matrix. The obtained results demonstrated that increased flux and rejection capability of membranes occurred at high clay dosage. In contrast, the low rejection capability was observed at either lower pH and higher initial feed concentrations. Ultimately, for 250 ppm of Cd(II), Pb(II), and Cu(II) ions, the constructed membranes showed maximum removal capability of 69.3%, 76.2%, and 82.5% of toxic cations, respectively.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3