Investigation of the Impact of Two Types of Epoxidized Vietnam Rubber Seed Oils on the Properties of Polylactic Acid

Author:

Thuy Nguyen Thi1ORCID,Lan Pham Ngoc2

Affiliation:

1. Hanoi University of Science and Technology, Hanoi 10000, Vietnam

2. VNU-University of Science, Hanoi 10000, Vietnam

Abstract

To minimize the brittleness of polylactic acid (PLA), the epoxidized rubber seed oils (ERO) or epoxidized ester rubber seed oils (EERO) are blended with PLA. The mechanical properties of ERO bioblend are higher than that of EERO bioblend and significantly improved compared to that of the PLA sample. Elongation at break is increased by 9.1 times, and impact strength and tensile toughness improved by 139% and 1370%, respectively. The morphological study showed the microdroplets of epoxidized oils distributed in the ERO bioblend are much smaller than those in the EERO bioblend. This means that the ERO is better compatible with PLA, and both ERO and EERO are partially miscible with PLA. This compatibility is confirmed by the decrease in the glass transition temperature, T g , from 65.7 to 60.5°C. The TGA analysis shows a sharp increase in an initial decomposition temperature (from 261.8 to 311.9°C) meaning an improvement in thermal properties. The NMR analysis proves that the epoxidized vegetable oils are linked to PLA chains, so both the melt flow index and an acid value of ERO or EERO bioblend decrease while the thermal stability is improved. The NMR peak area of some signals shows that the ERO is more attached to PLA, proving better compatibility of ERO with PLA, resulting in higher mechanical properties of ERO bioblend. The plasticizing effect of plasticizers is not dependent on the oxygen-oxirane content of the epoxidized oil but is strongly influenced by the acid value. Overall results show that both ERO and EERO can be used as a biodegradable, renewable plasticizer to replace petroleum-based plasticizers for PLA. In addition, the successful modification of PLA by using ERO or EERO promotes the use of this polymer as a potential material for researchers working on PLA applications.

Funder

Hanoi University of Science and Technology

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3