Pentoxifylline Enhances Antioxidative Capability and Promotes Mitochondrial Biogenesis in D-Galactose-Induced Aging Mice by Increasing Nrf2 and PGC-1α through the cAMP-CREB Pathway

Author:

Wang Yu1,Zhang Tianyun1,Zhao Hui1,Qi Chunxiao2,Ji Xiaoming1,Yan Hexin13,Cui Rui2,Zhang Guoliang12,Kang Yunxiao1ORCID,Shi Geming145ORCID

Affiliation:

1. Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China

2. Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China

3. Department of Histology and Embryology, Hebei University of Engineering, Handan 056002, China

4. Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China

5. Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China

Abstract

Aging is a complex phenomenon associated with oxidative stress and mitochondrial dysfunction. The objective of this study was to investigate the potential ameliorative effects of the phosphodiesterase inhibitor pentoxifylline (PTX) on the aging process and its underlying mechanisms. We treated D-galactose- (D-gal-) induced aging mice with PTX and measured the changes in behavior, degree of oxidative damage, and mitochondrial ultrastructure and content as well as the expression of nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated antioxidant genes and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha- (PGC-1α-) dependent mitochondrial biogenesis genes. The results demonstrated that PTX improved cognitive deficits, reduced oxidative damage, ameliorated abnormal mitochondrial ultrastructure, increased mitochondrial content and Nrf2 activation, and upregulated antioxidant and mitochondrial biogenesis gene expression in the hippocampus of wild-type aging mice. However, the above antiaging effects of PTX were obviously decreased in the brains of Nrf2-deficient D-gal-induced aging mice. Moreover, in hydrogen peroxide-treated SH-SY5Y cells, we found that cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and Nrf2/PGC-1α act in a linear way by CREB siRNA transfection. Thus, PTX administration improved the aging-related decline in brain function by enhancing antioxidative capability and promoting mitochondrial biogenesis, which might depend on increasing Nrf2 and PGC-1α by activating the cAMP-CREB pathway.

Funder

Hebei Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3