Automatic Recommendation Algorithm for Video Background Music Based on Deep Learning

Author:

Kai Hong1ORCID

Affiliation:

1. Department of P. E. and Art Education, Zhejiang Yuexiu University, Zhejiang, Shaoxing 312000, China

Abstract

As one of the traditional entertainment items, video background music has gradually changed from traditional consumption to network consumption, which naturally also has the problem of information overload. From the perspective of model design and auxiliary information, this paper proposes a tightly coupled fusion model based on deep learning and collaborative filtering to alleviate the problem of poor prediction accuracy due to sparse matrix in the scoring prediction problem. In the use of auxiliary information, this paper uses crawler technology to obtain auxiliary information on the user side and the video background music side and compensates for the model’s sensitivity to the sparsity of the score matrix from a data perspective. In terms of model design, this paper conducts auxiliary information mining based on the diversity and structural differences of auxiliary information, uses an improved stack autoencoder to learn user’s interests, and uses convolutional neural networks to mine hidden features of video background music. Based on the idea of probabilistic matrix decomposition, the tightly coupled fusion of multiple deep learning models and collaborative filtering is realized. By comprehensively considering user’s interest and video background music characteristics, the collaborative filtering process is supervised, and the optimized prediction result is finally obtained. The performance test and function test of the system were carried out, respectively, to verify the effectiveness of the hybrid recommendation algorithm and the effect of the system for recommendation. Through experimental analysis, it is proved that the algorithm designed in this paper can improve the recommendation quality and achieve the expected goal.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Piano Harmony Automatic Orchestration System Based on Deep Learning;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Research on Expanding Grassroots Employment Space for College Students in the Context of Rural Revitalization + Data Platform;Applied Mathematics and Nonlinear Sciences;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3