Affiliation:
1. Department of P. E. and Art Education, Zhejiang Yuexiu University, Zhejiang, Shaoxing 312000, China
Abstract
As one of the traditional entertainment items, video background music has gradually changed from traditional consumption to network consumption, which naturally also has the problem of information overload. From the perspective of model design and auxiliary information, this paper proposes a tightly coupled fusion model based on deep learning and collaborative filtering to alleviate the problem of poor prediction accuracy due to sparse matrix in the scoring prediction problem. In the use of auxiliary information, this paper uses crawler technology to obtain auxiliary information on the user side and the video background music side and compensates for the model’s sensitivity to the sparsity of the score matrix from a data perspective. In terms of model design, this paper conducts auxiliary information mining based on the diversity and structural differences of auxiliary information, uses an improved stack autoencoder to learn user’s interests, and uses convolutional neural networks to mine hidden features of video background music. Based on the idea of probabilistic matrix decomposition, the tightly coupled fusion of multiple deep learning models and collaborative filtering is realized. By comprehensively considering user’s interest and video background music characteristics, the collaborative filtering process is supervised, and the optimized prediction result is finally obtained. The performance test and function test of the system were carried out, respectively, to verify the effectiveness of the hybrid recommendation algorithm and the effect of the system for recommendation. Through experimental analysis, it is proved that the algorithm designed in this paper can improve the recommendation quality and achieve the expected goal.
Subject
Multidisciplinary,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献